STRUCTURAL CALCULATIONS

(Permit Submittal)

DUFFY/MCALEESE REMODEL

5330 Lansdowne Lane
Mercer Island, WA 98040

Quantum Job Number: 23488.01

Prepared for:
CHESMORE BUCK ARCHITECTURE
$27100^{\text {th }}$ Ave NE, Suite 100
Bellevue, Washington 98004

Prepared by:
QUANTUM CONSULTING ENGINEERS
1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901

1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901

DUFFY/MCALEESE REMODEL

5330 LANSDOWNE LN
MERCER ISLAND, WA 98040
QUANTUM JOB NUMBER: 23488.01

TABLE OF CONTENTS

DESIGN CRITERIA A-1
GRAVITY FRAMING B-1
LATERAL DESIGN C-1

QUANTUM| CONSULTING ENGINEERS

1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901

DUFFY/MCALEESE REMODEL

5330 LANSDOWNE LN
MERCER ISLAND, WA 98040
QUANTUM JOB NUMBER: 23488.01

DESIGN CRITERIA

Geotechnical Criteria

Allowable Bearing Pressure
Minimum Footing Width
Frost Depth

1500 PSF
Continuous: 18" min., Isolated: 24" min.
18" min.

Materials Criteria

Concrete (28 Day Strength):
Foundation/Slab on Grade
$\mathrm{F}^{\prime} \mathrm{C}=2,500 \mathrm{PSI}$

Reinforcing Steel:

Grade 40 (\#4 bar)
$F y=40,000 \mathrm{PSI}$
Wood Framing:
$2 x, 3 x \& 4 x$ Framing Members HF\#2 or DF\#2
$6 x$ Framing Members
DF\#1
Glulam Beams
Wood Sheathing

24F-V4 (V8 @ Cont. and Cant. Members)
APA RATED

Snow Load	Roof	25 psf
Live Load	Residential	40 psf

Assembly Loads

Roof Loads	
Standard Roofing	4.0 psf
1/2" Ply. Sheathing	1.5 psf
Joists @ 24" o.c.	2.1 psf
R38 Insulation	1.0 psf
5/8" GWB	2.8 psf
Lights, ducts	0.5 psf
Miscellaneous	1.1 psf
Total:	
	$\mathbf{1 3 . 0} \mathbf{~ p s f}$
SL=25 psf	

Patio Roof Loads		Comments
Standard Roofing	4.0 psf	
1/2" Ply. Sheathing	1.5 psf	
2x6 Joists @ 16" o.c.	2.1 psf	
Miscellaneous	0.4 psf	
Total:	8.0 psf	SL=25 psf

Interior Wall Framing	
$5 / 8^{\prime \prime}$ GWB	2.8 psf
2×4 @ 16" o.c.	0.9 psf
$5 / 8 "$ GWB	2.8 psf
Mech./Elec.	0.5 psf
Misc.	1.0 psf
	Total:
$\mathbf{8 . 0 ~ p s f}$	

Typical Floor Loads	
Flooring	3.0 psf
3/4" Ply. Sheathing	2.3 psf
Floor Joists @ 16" o.c.	2.5 psf
//8" GWB	2.8 psf
Lights, ducts	0.8 psf
Miscellaneous	0.6 psf
Partitons	-
Total:	

Exterior Wood Stud Wall	
Siding	2.3 psf
$1 / 2 "$ Plywood	1.5 psf
2×6 studs @ 16 " o.c.	1.7 psf
Insulation	0.5 psf
$1 / 2$ GWB	2.2 psf
Mech./Elec.	0.5 psf
Misc.	1.3 psf
Total:	

Deflection Criteria

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.
(3) The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address:	5330 Lansdowne Ln, Mercer Island, WA 98040, USA
Coordinates:	$47.5534012,-122.225403$
Elevation:	266 ft
Timestamp:	$2023-12-22 \mathrm{~T} 21: 32: 04.741 Z$
Hazard Type:	Wind

ASCE 7-16

MRI 10-Year	67 mph
MRI 25-Year	73 mph
MRI 50-Year	78 mph
MRI 100-Year	83 mph
Risk Category I	92 mph
Risk Category II	97 mph
Risk Category III	104 mph
Risk Category IV	108 mph

ASCE 7-05

ASCE 7-05 Wind Speed
85 mph

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.
Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why,

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Mercer Island Wind Exposure and Wind Speed-Up (Topographic Effect)

WIND EXPOSURE CATEGORIES \& WIND SPEED-UP FACTORS (ICC Section 1609 \& ASCE 7-05 Chapter 6)
It is the responsibility of the Owner (or their Design Professional) to review site conditions and determine the Kzt factor to be utilized for each specific project. The Kzt actors and wind exposure categories indicated on this map are the minimum values submit additional calculations and supporting topographic documentation (to verify the values utilized in their wind load determination)
Please note - The Kzt values indicated on this map are approximations based upon periodic calculations of representative samplings around Mercer Island. These values are intended for City of Mercer Island's plan review purposes only.

WIND EXPOSURE CATEGORIES:

Wind Exposure
Category
Exposure 'C' (1500 feet from Lake)
Exposure ' B ' (all other areas)

WIND SPEED-UP (TOPOGRAPHIC EFFECT) - $\mathrm{K}_{\mathbf{z}} \mathrm{t}$ Factor
$K_{\mathbf{z}} \mathrm{t}$ Factor

GENERAL NOTES FOR WIND EXPOSURE AND WIND SPEED.UP MAP

This map is the Wind Exposure Category and Wind Speed-up (Topographic Effects) Map for the
City of Mercer is isand. This map shows the minimum wind exposure cateogor and the minimum Ciny of Mercer island. This map shows the minimum wind exposure category and the minimu
wind speed-up. " K_{z} " "actor, which will be accepted without site specific documentation and calculation.
Other wind speed phenomena may occur on Mercer Island that is not specifically indentified on map. It is the responsibility of the Owner (or thei Design Professional) to review site conditions and determine the appropriate design wind speed and exposure category for their
specific project and location.
,
This map is or the sole use of the staff of the City of Mercer Island's Development Services general assessment of Wind Exposure Category and Wind Speed-up (Topographic Effects). All apes have not been specifically evaluated and there may be locations that are not correcci) represented on this map. It it the responsibitiry of nivividual propery owners and map users 10
evaluate risk associated with their proposed development. No site-specfific assessment of risk is implied or otherwise indicated by the City of Mercer Island with this map.
Information about data used for the map, references, and data limitation are all described the associated "Read Me" document. The digital version of this map is accompanied by a meta data City of Mercer Island website.

The City of Mercer Island is using guidance provided within ICC Section 1609 \& ASCE $7-05$
hapter 6 regarding definitions used when creating this map.
definitions:
$\mathrm{K}_{\mathrm{z}} \mathrm{f}$ factor:
The topographic effect of wind speed-up at isolated hills, ridges, and escarpments constituting abrupt changes in the general topography, located in any exposure category, that meet all of the conditions noted in ASCE 7 -
Loads for Buildings and Other Structures, Section 6.5.7.
Exposure B: The wind exposure category that applies where the site in question is located a and the mean roof height is less than or equal to 30 feet per IBC 2006 section 1609.4.3.
e site in question is located within 1500 feet from the shoreline per IBC 2006 section 1609.4.3.
85 mph second gust per IRC Figure R301 2(4)

(3) The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address:
Coordinates:
Elevation:
Timestamp:

Hazard Type:

Reference Document:

5330 Lansdowne Ln, Mercer Island, WA 98040, USA
47.5534012, -122.225403

266 ft
2023-12-22T21:32:34.036Z
Seismic
ASCE7-16

Risk Category:	II
Site Class:	D-default

Basic Parameters

Name	Value	Description
S_{S}	1.454	MCE $_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.504	MCE $_{\mathrm{R}}$ ground motion (period=1.0s)
S_{MS}	1.745	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	*null	Site-modified spectral acceleration value
S_{DS}	1.163	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	*null	Numeric seismic design value at 1.0 s SA

* See Section 11.4.8
-Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F_{a}	1.2	Site amplification factor at 0.2 s
F_{v}	* null	Site amplification factor at 1.0s
CR_{S}	0.902	Coefficient of risk (0.2s)
CR_{1}	0.898	Coefficient of risk (1.0s)
PGA	0.623	MCE ${ }_{\mathrm{G}}$ peak ground acceleration
$\mathrm{F}_{\mathrm{PGA}}$	1.2	Site amplification factor at PGA
PGA ${ }_{M}$	0.747	Site modified peak ground acceleration
T_{L}	6	Long-period transition period (s)
SsRT	1.454	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.612	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	4.159	Factored deterministic acceleration value (0.2s)
S1RT	0.504	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.562	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.615	Factored deterministic acceleration value (1.0s)
PGAd	1.393	Factored deterministic acceleration value (PGA)

[^0]The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Q U A N T U M

1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901

DUFFY/MCALEESE REMODEL

5330 LANSDOWNE LN
MERCER ISLAND, WA 98040
QUANTUM JOB NUMBER: 23488.01

GRAVITY FRAMING

Upper Floor			
Member Name	Results	Current Solution	Comments
UB1	Passed	1 piece(s) $31 / 8^{\prime \prime} \times 9$ " 24F-V4 DF Glulam	
UB2	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 9$ " $24 F-$ V8 DF Glulam	
UB3	Passed	1 piece(s) $31 / 8^{\prime \prime} \times 15^{\prime \prime} 24 F-\mathrm{V} 4$ DF Glulam	
UB4	Passed	1 piece(s) $31 / 8{ }^{\prime \prime} \times 9$ " $24 F-$ V4 DF Glulam	
UB5	Passed	2 piece(s) 2×8 DF No. 2	
UJ 1 - Patio Roof J oists	Passed	1 piece(s) 2×6 DF No. 2 @ 16" OC	
UB6 - Patio Roof	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 9$ " $24 F-\mathrm{V} 4$ DF Glulam	

ForteWEB Software Operator	Job Notes
Bryce Dacus	
Quantum Consulting Engineers	
(206) 957-3900	
BDacus@quantumce.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3033 @ 2 "$	$4395\left(2.25^{\prime \prime}\right)$	Passed (69\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$2336 @ 11^{\prime} 1 / 2^{\prime \prime}$	4969	Passed (47\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$5998 @ 4^{\prime} 23 / 16^{\prime \prime}$	8438	Passed (71\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.181 @ 44^{\prime} 51 / 2^{\prime \prime}$	0.219	Passed (L/582)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.237 @ 44^{\prime} 51 / 2^{\prime \prime}$	0.438	Passed (L/442)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=8^{\prime} 9^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1-Stud wall - DF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.55^{\prime \prime}$	741	2369	3110	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - DF	$3.50^{\prime \prime}$	$2.25 "$	$1.50^{\prime \prime}$	557	1756	2313	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 11 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$8^{\prime} 11^{\prime \prime} \circ / \mathrm{c}$	

\bullet-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $8^{\prime} 113 / 4^{\prime \prime}$	N/A	6.8	--	
1 - Uniform (PSF)	0 to $5^{\prime} 3^{\prime \prime}$ (Front)	$14^{\prime} 2 "$	12.0	40.0	upper floor
2 - Uniform (PSF)	$5^{\prime} 3^{\prime \prime}$ to $9^{\prime} 1^{\prime \prime}$ (Front)	$7^{\prime} 6^{\prime \prime}$	12.0	40.0	upper floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Bryce Dacus	
Quantum Consulting Engineers	
(206) 957-3900	
BDacus@quantumce.com	

MEMBER REPORT

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$8122 @ 3^{\prime} 73 / 4^{\prime \prime}$	$11211(3.50 ")$	Passed (72\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$4433 @ 4^{\prime} 61 / 2^{\prime \prime}$	9371	Passed (47\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$8282 @ 8^{\prime} 10^{\prime \prime}$	13838	Passed (60\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Neg Moment (Ft-lbs)	$-7599 @ 3^{\prime} 73 / 4^{\prime \prime}$	15913	Passed (48\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.174 @ 0$	0.200	Passed (2L/502)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	$0.260 @ 8^{\prime} 81 / 4^{\prime \prime}$	0.489	Passed (L/450)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{0.75L+0.75S} \mathrm{(Alt} \mathrm{Spans)}$

- Deflection criteria: LL (L/480) and TL (L/240)
- Overhang deflection criteria: LL (0.2") and TL (2L/240).
- Upward deflection on left cantilever exceeds overhang deflection criteria.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=9^{\prime} 7 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L=5' $41 / 4^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				
	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1-Stud wall - DF	$3.50 "$	$3.50^{\prime \prime}$	$2.54 "$	2831	3656	3399	8122	Blocking
2-Stud wall - DF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50 "$	1038	$2459 /-153$	873	3537	$11 / 4$ " Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$13^{\prime} 6 \mathrm{6} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} 6 \mathrm{o} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	Comments
0 - Self Weight (PLF)	0 to $13 ' 5$ 3/4"	N/A	11.2	--	--	
1 - Uniform (PSF)	0 to 3' 9" (Front)	7' 6"	12.0	40.0	-	upper floor
2 - Uniform (PSF)	3' 9" to 13' 7 " (Front)	12' $2^{\prime \prime}$	12.0	40.0	-	upper floor
3 - Point (lb)	1' (Front)	N/A	800	-	1670	upper floor post
4 - Point (lb)	6' 6" (Front)	N/A	365	-	760	upper floor post2
5 - Uniform (PSF)	6' 6" to 10' 4" (Front)	12' ${ }^{\prime \prime}$	12.0	-	25.0	bearing wall
6 - Point (lb)	10' 4" (Front)	N/A	220	-	450	upper floor post3

ForteWEB Software Operator	Job Notes
Bryce Dacus	
Quantum Consulting Engineers	
(206) 957-3900	
BDacus@quantumce.com	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Bryce Dacus Quantum Consulting Engineers (206) 957-3900 BDacus@quantumce.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5716 @ 2 "$	6836 (3.50")	Passed (84\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$4508 @ 1^{\prime} 61 / 2^{\prime \prime}$	9523	Passed (47\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$19899 @ 77^{\prime} 31 / 2^{\prime \prime}$	26953	Passed (74\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.258 @ 77^{\prime} 31 / 2^{\prime \prime}$	0.356	Passed (L/663)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.460 @ 77^{\prime} 31 / 2^{\prime \prime}$	0.712	Passed (L/372)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=14^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1-Stud wall - DF	3.50 "	3.50 "	2.93"	2510	2042	2233	5716	Blocking
2 - Stud wall - DF	3.50"	3.50"	2.93"	2510	2042	2233	5716	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$14^{\prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Bryce Dacus	
Quantum Consulting Engineers	
(206) 957-3900	
BDacus@quantumce.com	

Upper Floor, UB4
1 piece(s) 3 1/8" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1787 @ 2"	$4395\left(2.255^{\prime \prime}\right)$	Passed (41\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1488 @ 1^{\prime} 1 / 2^{\prime \prime}$	4969	Passed (30\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$4896 @ 5^{\prime} 81 / 2^{\prime \prime}$	8438	Passed (58\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.238 @ 5^{\prime} 81 / 2^{\prime \prime}$	0.277	Passed (L/558)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.317 @ 5^{\prime} 81 / 2^{\prime \prime}$	0.554	Passed (L/420)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=11^{\prime} 1^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Stud wall - DF	3.50 "	2.25"	1.50 "	449	1370	1819	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50 "	449	1370	1819	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$11^{\prime} 3 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 3 \prime \prime / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $11^{\prime} 33 / 4^{\prime \prime}$	N / A	6.8	--	
1 - Uniform (PSF)	0 to $11^{\prime} 5 \prime$ (Front)	6^{\prime}	12.0	40.0	upper floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Bryce Dacus	
Quantum Consulting Engineers	
(206) 957-3900	
BDacus@quantumce.com	

2 piece(s) 2×8 DF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1371 @ 2 "$	$4219\left(2.25{ }^{\prime \prime}\right)$	Passed (32\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$811 @ 103 / 4^{\prime \prime}$	2610	Passed (31\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1244 @ 2^{\prime} 1 / 2^{\prime \prime}$	2365	Passed (53\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.016 @ 2^{\prime} 1 / 2^{\prime \prime}$	0.094	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.021 @ 2^{\prime} 1 / 2^{\prime \prime}$	0.188	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1-Stud wall - DF	$3.50 "$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	341	1103	1444	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - DF	$3.50 "$	$2.25^{\prime \prime}$	$1.50 "$	341	1103	1444	$11 / 4$ " Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 11^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 11^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $3^{\prime} 113 / 4^{\prime \prime}$	N / A	5.5	--	
1 - Uniform (PSF)	0 to $4^{\prime} 1^{\prime \prime}$ (Front)	$13^{\prime} 6^{\prime \prime}$	12.0	40.0	upper floor

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Bryce Dacus	
Quantum Consulting Engineers	
(206) 957-3900	
BDacus@quantumce.com	

PASSED
Upper Floor, UJ 1 - Patio Roof Joists
1 piece(s) 2×6 DF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.
Member Length : 13' 8' $^{\prime \prime}$

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$405 @ 3^{\prime} 73 / 4^{\prime \prime}$	$3293(3.50 ")$	Passed (12\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$218 @ 4^{\prime} 3^{\prime \prime}$	1139	Passed (19\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$434 @ 8^{\prime} 111 / 4^{\prime \prime}$	975	Passed (45\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Live Load Defl. (in)	$0.169 @ 8^{\prime} 73 / 4^{\prime \prime}$	0.488	Passed (L/692)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.213 @ 8^{\prime} 83 / 16^{\prime \prime}$	0.651	Passed (L/551)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch: $1 / 12$

Deflection criteria: LL (L/240) and TL (L/180).

- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Beveled Plate - DF	$3.50 "$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	98	306	405	Blocking
2 - Beveled Plate - DF	$3.50 "$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	47	158	205	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$13^{\prime} 8^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$13^{\prime} 8^{\prime \prime}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $13^{\prime \prime} 7$	$16^{\prime \prime}$	8.0	25.0	Default Load

Location Analysis	Shear (lbs)			Moment (Ft-lbs)			Deflection (in)		Comments
	Actual	Allowed	LDF	Actual	Allowed	LDF	Live Load	Total	
1-3'5"	-150	1139	1.15	-257	975	1.15	-0.011	-0.013	
2-0	0	891	0.90	0	763	0.90	-0.156	-0.178	
3-3' ${ }^{\prime \prime}$	-154	1139	1.15	-270	975	1.15	0.000	0.000	

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Bryce Dacus	
Quantum Consulting Engineers	
(206) 957-3900	
BDacus@quantumce.com	

Upper Floor, UB6 - Patio Roof

1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4201 @ 20' 2 1/4"	17617 (5.50")	Passed (24\%)	--	1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	2407 @ 19' 2 1/2"	9371	Passed (26\%)	1.15	1.0 D + 1.0 S (Adj Spans)
Pos Moment (Ft-lbs)	8835 @ 11' 9 9/16"	15913	Passed (56\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Neg Moment (Ft-lbs)	-3514 @ 20' 2 1/4"	12266	Passed (29\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.567 @ 11' 10 15/16"	0.823	Passed (L/348)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.737 @ 11' 10 3/4"	1.097	Passed (L/268)	--	1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180)
- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$.
- Upward deflection on left cantilever exceeds overhang deflection criteria.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=15^{\prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=6^{\prime} 2^{\prime \prime}$.
- Upward deflection on left and right cantilevers exceeds $0.4^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50 "$	$5.50 "$	$1.50 "$	991	2763	3755	Blocking
2 - Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$1.50 "$	1119	3081	4201	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$24^{\prime} 111^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$24^{\prime} 11 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $24^{\prime} 11^{\prime \prime}$	N / A	11.2	--	
1 - Uniform (PLF)	0 to $24^{\prime} 11^{\prime \prime}$ (Front)	N / A	73.5	229.5	Linked from: Patio Roof Joists, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Bryce Dacus	
Quantum Consulting Engineers	
(206) 957-3900	
BDacus@quantumce.com	

QUANTUM| CONSULTING ENGINEERS

1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901

DUFFY/MCALEESE REMODEL

5330 LANSDOWNE LN
MERCER ISLAND, WA 98040
QUANTUM JOB NUMBER: 23488.01

LATERAL DESIGN

Structure: Duffy/Mcaleese Remodel Patio Roof
Address: Mercer Island
Latitude:

Structure Classification

Risk Category : II per ASCE Table 1.5-1
Seismic Force-Resisting System: Timber Frames

$\mathrm{R}:$	$\mathbf{1 1 / 2}$	per ASCE Table 12.2-1
$\mathrm{W}_{\mathrm{o}}:$	$\mathbf{1 1 1 / 2}$	per ASCE Table 12.2-1
$\mathrm{C}_{\mathrm{d}}:$	$\mathbf{1 1 / 2}$	per ASCE Table 12.2-1
$\mathrm{h}_{\mathrm{n}}(\mathrm{ft}):$	10.00	height above the base to the highest level of the structure

Site Ground Motion

Reg. Structure/5 Stories Max:	No		Per ASCE 12.8.1.3
$\mathrm{S}_{1}(\mathrm{~g}-\mathrm{sec}):$	0.50	$\mathrm{~S}_{\mathrm{S}}(\mathrm{g}-\mathrm{sec}):$	1.45
Site Class:	D	Assumed Value	per ASCE 11.4.3

ASCE 11.4.8 Exception 2 Used
$\mathrm{F}_{\mathrm{v}} 1.80$

$\mathrm{S}_{\mathrm{M} 1}(\mathrm{~g}-\mathrm{sec}):$	0.90	
$\mathrm{~S}_{\mathrm{D} 1}(\mathrm{~g}-\mathrm{sec}):$	$\mathbf{0 . 6 0}$	
$\mathrm{SDC}:$	D	per ASCE 11.6
$\mathrm{I}_{\mathrm{E}}:$	$\mathbf{1 . 0 0}$	per ASCE Table 1.5-2

$\mathrm{F}_{\mathrm{a}} 1.20$
1.2 Min Value where SC D Assumed
S_{MS} (g-sec): 1.74
$S_{\text {DS }}$ (g-sec): 1.16
per ASCE 11.4.4
per ASCE 11.4.5

Fundamental Period per ASCE 12.8.2

Period Method: Approximate Fundamental Period
Structure Type: All Other Structural Systems
$\mathrm{T}_{\mathrm{L}}(\mathrm{sec})$: $\quad 6.00 \quad$ ASCE Figures 22-14 through 22-17
$\mathrm{T}_{\mathrm{s}}: \quad 0.52$
$\mathrm{Ta}(\mathrm{sec}): \quad 0.11 \quad \mathrm{Ct}$ * hnx per ASCE Eq. 12.8-7
$\mathrm{T}_{\text {use }}$ (sec): $0.11 \quad{ }^{-}<=\mathrm{TL}$
Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{s}}: \quad 0.77=\mathrm{S}_{\mathrm{DS}} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{E}}\right) \text { per ASCE Eq. 12.8-2 } \\
& \mathrm{C}_{\mathrm{s}-\mathrm{max}} \text { : } \quad 3.56=\mathrm{S}_{\mathrm{D} 1} /\left(\mathrm{T}_{\mathrm{a}}{ }^{*} \mathrm{R} / \mathrm{I}_{\mathrm{E}}\right) \text { for } \mathrm{T}<=\mathrm{T}_{\mathrm{L}} \text { per ASCE Eq. 12.8-3 } \\
& \mathrm{C}_{s-\text { max }} \text { : } \quad-\quad=\mathrm{S}_{\mathrm{D} 1}{ }^{*} \mathrm{~T}_{\mathrm{L}} /\left(\mathrm{T}_{\mathrm{a}}{ }^{2 *} \mathrm{R} / I_{\mathrm{E}}\right) \text { for } \mathrm{T}>\mathrm{T}_{\mathrm{L}} \text { per ASCE Eq. 12.8-4 } \\
& \mathrm{C}_{\mathrm{s}-\mathrm{min}} \text { : } 0.05 \text { per ASCE Eq. 12.8-5 } \\
& \mathrm{C}_{\mathrm{s}-\mathrm{min} \text { : }} \quad--\quad=0.5 \mathrm{~S}_{1} /\left(\mathrm{R} / I_{E}\right) \text { for } \mathrm{S}_{1}=>0.6 \mathrm{~g} \text { per ASCE Eq. 12.8-6 } \\
& \mathrm{C}_{\text {s-use }}: \quad 0.77 \\
& \mathrm{~V}: \quad 0.773 \mathrm{~W}=\mathrm{C}_{\mathrm{s} \text {-use }}{ }^{*} \mathrm{~W} \text { per ASCE Eq. 12.8-1 }
\end{aligned}
$$

Structure: Duffy/Mcaleese Remodel Patio Roof

Seismic Parameters

$\mathrm{I}_{\mathrm{E}}:$	1.00	per ASCE Table 1.5-2
$\mathrm{S}_{\mathrm{DS}}(\mathrm{g}-\mathrm{sec}):$	1.16	per ASCE 11.4.4
Period $(\mathrm{Sec}):$	0.11	per ASCE 12.8.2.1
$\mathrm{k}:$	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

$$
\begin{aligned}
F_{x} & =C_{v x} V \text { per ASCE Eq. 12.8-11 } \\
C_{v x} & =\left(w_{x} h_{x}{ }^{k}\right) /\left(S w_{i} h_{i}^{k}\right) \text { per ASCE Eq. 12.8-12 }
\end{aligned}
$$

Level	$\mathrm{h}_{\mathrm{x}}(\mathrm{ft})$	$\mathrm{w}_{\mathrm{x}}(\mathrm{k})$	$\%$ of $\mathrm{W}_{\text {total }}$	$\mathrm{w}_{\mathrm{x}}{ }^{*} \mathrm{~h}_{\mathrm{x}}{ }^{\mathrm{k}}$	$\mathrm{C}_{\mathrm{vx}}(\%)$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\mathrm{V}_{\mathrm{x}}(\mathrm{k})$
Roof	10.00	2.40	100.0%	24.0	100.0%	1.86	1.86

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

$$
\begin{aligned}
F_{p x} & =\left(S F_{i} / S_{w_{i}}\right)^{*} w_{p x} \text { per ASCE Eq 12.10-1 } \\
F_{p x-\text { max }} & =0.4^{*} S_{D S}{ }^{*} E^{*} w_{p x} \text { per per ASCE 12.10.1.1 } \\
F_{p x-\text { min }} & =0.2^{*} S_{D S}{ }^{*} I_{E}{ }^{*} w_{p x} \operatorname{per} \operatorname{per} \text { ASCE 12.10.1.1 }
\end{aligned}
$$

Diaphragm/Story

Level	$\mathrm{w}_{\mathrm{px}}(\mathrm{k})$	$\Sigma \mathrm{w}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\Sigma \mathrm{F}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{px}}(\mathrm{k})$	Notes
Roof	2.40	2.40	1.86	1.86	1.11	$=\mathrm{Fp}-\mathrm{max}$

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101
Project: Duffy/Mcaleese

Date:	1/17/24	Job No:
Designer: BSD	Sheet:	2
Checked By:		

Structure: Duffy/Mcaleese Remodel Patio Roof
Address: Mercer Island
Latitude:

Structure Classification

Risk Category : II per ASCE Table 1.5-1

Seismic Force-Resisting System: Light-Framed Wood Walls Sheathed with Structural Panels
R: $\quad 6$ 1/2 per ASCE Table 12.2-1
W_{o} : 3 per ASCE Table 12.2-1
C_{d} : 4 per ASCE Table 12.2-1
$h_{n}(\mathrm{ft}): 10.00$ height above the base to the highest level of the structure

Site Ground Motion

Reg. Structure/5 Stories Max:	No		Per ASCE 12.8.1.3	
$\mathrm{S}_{1}(\mathrm{~g}-\mathrm{sec}):$	0.50	$\mathrm{~S}_{\mathrm{S}}(\mathrm{g}-\mathrm{sec}):$	1.45	
Site Class:	D	Assumed Value	per ASCE 11.4.3	

ASCE 11.4.8 Exception 2 Used
$\mathrm{F}_{\mathrm{v}} 1.80$

$S_{M 1}(\mathrm{~g}-\mathrm{sec}):$	0.90	
$\mathrm{~S}_{\mathrm{D} 1}(\mathrm{~g}-\mathrm{sec}):$	$\mathbf{0 . 6 0}$	
$\mathrm{SDC}:$	\mathbf{D}	per ASCE 11.6
$\mathrm{I}_{\mathrm{E}}:$	$\mathbf{1 . 0 0}$	per ASCE Table 1.5-2

$\mathrm{F}_{\mathrm{a}} 1.20$
1.2 Min Value where SC D Assumed
S_{MS} (g-sec): 1.74
$S_{D S}$ (g-sec): 1.16
per ASCE 11.4.4
per ASCE 11.4.5

Fundamental Period per ASCE 12.8.2

Period Method: Approximate Fundamental Period
Structure Type: All Other Structural Systems
$\mathrm{T}_{\mathrm{L}}(\mathrm{sec})$: $\quad 6.00 \quad$ ASCE Figures 22-14 through 22-17
$\mathrm{T}_{\mathrm{s}}: \quad 0.52$
$\mathrm{Ta}(\mathrm{sec}): \quad 0.11 \quad \mathrm{Ct}$ * hnx per ASCE Eq. 12.8-7
$\mathrm{T}_{\text {use }}$ (sec): $0.11 \quad-\quad<=T L$
Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8
$\mathrm{C}_{\mathrm{s}}: \quad 0.18=\mathrm{S}_{\mathrm{DS}} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)$ per ASCE Eq. 12.8-2
$\mathrm{C}_{\mathrm{s} \text {-max }}$: $0.82=\mathrm{S}_{\mathrm{D} 1} /\left(\mathrm{T}_{\mathrm{a}}{ }^{*} \mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)$ for $\mathrm{T}<=\mathrm{T}_{\mathrm{L}}$ per ASCE Eq. 12.8-3
$\mathrm{C}_{\text {s-max }}$: $\quad-\quad=\mathrm{S}_{\mathrm{D} 1}{ }^{*} \mathrm{~T}_{\mathrm{L}} /\left(\mathrm{T}_{\mathrm{a}}{ }^{2 *} \mathrm{R} / I_{\mathrm{E}}\right)$ for $\mathrm{T}>\mathrm{T}_{\mathrm{L}}$ per ASCE Eq. 12.8-4
$\mathrm{C}_{\mathrm{s}-\mathrm{min}}$: 0.05 per ASCE Eq. 12.8-5
$\mathrm{C}_{\text {s-min }}: \quad-\quad=0.5 \mathrm{~S}_{1} /\left(\mathrm{R} / I_{E}\right)$ for $\mathrm{S}_{1}=>0.6 \mathrm{~g}$ per ASCE Eq. 12.8-6
$\mathrm{C}_{\text {s-use }}$: 0.18
V : $0.178 \mathrm{~W}=\mathrm{C}_{\mathrm{s} \text {-use }}{ }^{*} \mathrm{~W}$ per ASCE Eq. 12.8-1

Structure: Duffy/Mcaleese Remodel Patio Roof

Seismic Parameters

$\mathrm{I}_{\mathrm{E}}:$	1.00	per ASCE Table 1.5-2
$\mathrm{S}_{\mathrm{DS}}(\mathrm{g}-\mathrm{sec}):$	1.16	per ASCE 11.4.4
Period $(\mathrm{Sec}):$	0.11	per ASCE 12.8.2.1
$\mathrm{k}:$	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

$$
\begin{aligned}
F_{x} & =C_{v x} V \text { per ASCE Eq. 12.8-11 } \\
C_{v x} & =\left(w_{x} h_{x}{ }^{k}\right) /\left(S w_{i} h_{i}^{k}\right) \text { per ASCE Eq. 12.8-12 }
\end{aligned}
$$

Level	$\mathrm{h}_{\mathrm{x}}(\mathrm{ft})$	$\mathrm{w}_{\mathrm{x}}(\mathrm{k})$	$\%$ of $\mathrm{W}_{\text {total }}$	$\mathrm{w}_{\mathrm{x}}{ }^{*} \mathrm{~h}_{\mathrm{x}}{ }^{\mathrm{k}}$	$\mathrm{C}_{\mathrm{vx}}(\%)$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\mathrm{V}_{\mathrm{x}}(\mathrm{k})$
Roof	10.00	2.40	100.0%	24.0	100.0%	0.43	0.43

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

$$
\begin{aligned}
F_{p x} & =\left(S F_{i} / S_{w_{i}}\right)^{*} w_{p x} \text { per ASCE Eq 12.10-1 } \\
F_{p x-\text { max }} & =0.4^{*} S_{D S}{ }^{*} E^{*} w_{p x} \text { per per ASCE 12.10.1.1 } \\
F_{p x-\text { min }} & =0.2^{*} S_{D S}{ }^{*} I_{E}{ }^{*} w_{p x} \operatorname{per} \operatorname{per} \text { ASCE 12.10.1.1 }
\end{aligned}
$$

Diaphragm/Story

Level	$\mathrm{w}_{\mathrm{px}}(\mathrm{k})$	$\Sigma \mathrm{w}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\Sigma \mathrm{F}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{px}}(\mathrm{k})$	Notes
Roof	2.40	2.40	0.43	0.43	0.56	$=\mathrm{Fp}-\mathrm{min}$

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101
Project: Duffy/Mcaleese

Date:	1/17/24	Job No:
Designer: BSD	Sheet:	2
Checked By:		

PATIO ROOF SEISMIC DESIGN

EAST/WEST DIRECTION:


```
PATIO ROOF WEIGHT = 300SF*8PSF =2,400 #
Cs=0.77 [USING TIMBER FRAME R=1.5]
Ve =1,850 # (LRFD)
Fp=1,850 #*(63%)*0.7 [ASSUMING 63% TRIB GOES TO FRAME]
    =815 # (ASD)
```

USING A POST HEIG HT OF 8'-0"AND A MOMENT CONNECTION AT THE BASE OF BOTH POSTS, THE DESIGN MOMENT IS:
$M=815 \# 2$ POSTS * 8'-0"TALL $=3,260 \# F T(A S D) \leftarrow-4,660$ \#FTLRFD
USING SIMPSON MP66BZ POST BASE FOR SEISMIC CATEGORY D AND REINFORCED CONCRETE:

```
MOMENT CAPACITY = 3,350 #FT (ASD)>3,260 #FT(ASD)OK
```

-AT (E) HOUSE: Fp $=300$ \# (SEE BELOW)
ASSUMING 37\% TRIB GOES TO HOUSE...
SHEATHING 4'-0"PONY WALL UNDER ROOF RESULTS IN ($300 \#^{*} 37 \%$)/4'-0" $=28$ PLF
USING 6"NAIL SPACING OK

NORTH/SOUTH DIRECTION:

ASSUMPTIONS:

- ENTIRE LATERAL LOAD GOES INTO (E) HOUSE IN NORTH/SOUTH DIRECTION
-LATERAL RESISTING SYSTEM IS WOOD SHEAR WALLS UNDER EAST AND WEST ENDS OF PATIO ROOF

PATIO ROOF WEIGHT $=300$ SF*8PSF $=2,400$ \#
$C s=0.18$
[USING SHEAR WALL $R=6.5$]
$V \mathrm{e}=430$ \# (LRFD)
$F p=430 \# * 0.7 \quad[A S S U M I N G$ HALF TRIB] $=300$ \# (ASD)

R 1 $=$ R $2=300$ \#* $6^{\prime}-8^{\prime \prime} / 22^{\prime}-8^{\prime \prime}$
$=88$ \# (ASD)
USING SHEAR WALLS W/ 6"8d PANEL EDGE NAIL
SPACING OK

Q U A N T U M
CONSULTING ENGINEERS

DUFFY MCALEESEREMODEL	2024-01-11	23488.01
project	date	project no.
PATIO ROOF POSTBASE	B S D	
	designer	sheet
CHESMORE5 $\mathrm{CHCK}^{\text {S }}$		
client	checked by	

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

LIC\# : KW-06016450, Build:20.22.3.16
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202́c

DESCRIPTION: Patio Roof Post

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16

General Information

Material Properties		Soil Design Values	
f'c : Concrete 28 day strength	2.50 ksi	Allowable Soil Bearing	1.50 ksf
fy : Rebar Yield	60.0 ksi	Soil Density	110.0 pcf
Ec: Concrete Elastic Modulus	$3,122.0 \mathrm{ksi}$	Increase Bearing By Footing Weight	Yes
Concrete Density	145.0 pcf	Soil Passive Resistance (for Sliding)	300.0 pcf
φ Values Flexure	0.90	Soil/Concrete Friction Coeff.	0.30
Shear	0.750	Increases based on footing Depth	
Analysis Settings		Footing base depth below soil surface	2.0 ft
Min Steel \% Bending Reinf.	$=0.00180$	Allow press. increase per foot of depth	ksf
Min Allow \% Temp Reinf.	0.00180	when footing base is below	ft
Min. Overturning Safety Factor	1.0:1		
Min. Sliding Safety Factor	1.0:1	Increases based on footing plan dimension	
Add Ftg Wt for Soil Pressure	Yes	Allowable pressure increase per foot of depth	
Use ftg wt for stability, moments \& shears	Yes	when max, length or width is greater than =	ksf
Add Pedestal Wt for Soil Pressure	Yes	gh or width is grea	ft
Use Pedestal wt for stability, mom \& shear	Yes		

Dimensions

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing					Project File: Duffy Remodel.ec6		
LIC\# : KW-06016450, Build:20.22.3.16 DESCRIPTION: Patio Roof Post			QUANTUM CONSULTING ENGINEERS		(c) ENERCALC INC 1983-202¢		
DESIGN SUMMARY					Design OK		
	Min. Ratio	Item			Applied	Capacity	Governing Load Combination
PASS	0.6787	Soil Bearing	1.10 ksf	1.621 ksf	+0.60D+0.70E about Z-Z axis		
PASS	n/a	Overturning - $\mathrm{X}-\mathrm{X}$	0.0 k -ft	0.0 k -ft	No Overturning		
PASS	1.314	Overturning - $\mathrm{Z}-\mathrm{Z}$	3.262 k -ft	4.286 k -ft	+0.60D+0.70E		
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding		
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding		
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift		
PASS	0.08155	Z Flexure (+X)	0.6987 k-ft/ft	$8.568 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+0.6680D+E		
PASS	0.03106	Z Flexure (-X)	0.2661 k-ft/ft	$8.568 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.20D+1.60S		
PASS	0.03106	X Flexure (+Z)	0.2661 k-ft/ft	8.568 k -ft/ft	+1.20D+1.60S		
PASS	0.03106	X Flexure (-Z)	0.2661 k-ft/ft	$8.568 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.20D+1.60S		
PASS	0.1083	1-way Shear (+X)	8.126 psi	75.0 psi	+0.6680D+E		
PASS	0.03527	1-way Shear (-X)	2.646 psi	75.0 psi	+1.20D+1.60S		
PASS	0.03527	1-way Shear (+Z)	2.646 psi	75.0 psi	+1.20D+1.60S		
PASS	0.03527	1-way Shear (-Z)	2.646 psi	75.0 psi	+1.20D+1.60S		
PASS	0.04074	2-way Punching	6.111 psi	150.0 psi	+1.20D+1.60S		
Detailed Results							

Soil Bearing

Rotation Axis \& Load Combination...	Gross Allowable	Xec	${ }_{(\mathrm{in})^{\text {Zecc }}}$	Actual Soil Bearing Stress @ Location				Actual / Allow Ratio
				Bottom, -Z	Top, +Z	Left, -X	Right, +X	
X-X, D Only	1.621	n/a	0.0	0.3332	0.3332	n/a	n/a	0.206
X-X, +D+S	1.621	n/a	0.0	0.5536	0.5536	n/a	n/a	0.342
X-X, +D+0.750S	1.621	n/a	0.0	0.4985	0.4985	n/a	n/a	0.308
X-X, +0.60D	1.621	n/a	0.0	0.1999	0.1999	n/a	n/a	0.123
X-X, +D+0.70E	1.621	n/a	0.0	0.3332	0.3332	n/a	n/a	0.206
X-X, +D+0.750S+0.5250E	1.621	n/a	0.0	0.4985	0.4985	n/a	n/a	0.308
X-X, +0.60D+0.70E	1.621	n/a	0.0	0.1999	0.1999	n/a	n/a	0.123
Z-Z, D Only	1.621	0.0	n/a	n /a	n/a	0.3332	0.3332	0.206
Z-Z, +D+S	1.621	0.0	n/a	n/a	n/a	0.5536	0.5536	0.342
Z-Z, +D+0.750S	1.621	0.0	n/a	n/a	n/a	0.4985	0.4985	0.308
Z-Z, +0.60D	1.621	0.0	n/a	n/a	n/a	0.1999	0.1999	0.123
Z-Z, +D+0.70E	1.621	9.590	n/a	n/a	n/a	0.0	0.8127	0.501
Z-Z, +D+0.750S+0.5250E	1.621	4.807	n/a	n/a	n/a	0.1596	0.8375	0.517
Z-Z, +0.60D+0.70E	1.621	15.983	n/a	n/a	n/a	0.0	1.10	0.679
Overturning Stability								

Overturning Stability

Rotation Axis \& Load Combination...	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+S	None	0.0 k-ft	Infinity	OK
X-X, +D+0.750S	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +0.60D	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+0.70E	None	0.0 k-ft	Infinity	OK
X-X, +D+0.750S+0.5250E	None	0.0 k-ft	Infinity	OK
X-X, +0.60D+0.70E	None	0.0 k-ft	Infinity	OK
Z-Z, D Only	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
Z-Z, +D+S	None	0.0 k-ft	Infinity	OK
Z-Z, +D+0.750S	None	0.0 k-ft	Infinity	OK
Z-Z, +0.60D	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
Z-Z, +D+0.70E	$3.262 \mathrm{k}-\mathrm{ft}$	$7.143 \mathrm{k}-\mathrm{ft}$	2.190	OK
Z-Z, +D+0.750S+0.5250E	2.447 k -ft	$10.687 \mathrm{k}-\mathrm{ft}$	4.368	OK
Z-Z, +0.60D+0.70E	3.262 k-ft	4.286 k-ft	1.314	OK
Sliding Stability			All units k	

| Force Application Axis
 Load Combination...\quad Sliding Force | Resisting Force | Stability Ratio | Status |
| :---: | :---: | :---: | :---: | :---: |

[^1]Project Title:
Engineer:
Project ID:
Project Descr:

General Footing	

LIC\# : KW-06016450, Build:20.22.3.16
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202́c

DESCRIPTION: Patio Roof Post
Footing Flexure

Flexure Axis \& Load Combination	$\begin{aligned} & \mathrm{Mu} \\ & \mathrm{k}-\mathrm{ft} \end{aligned}$	Side	Tension Surface	$\begin{aligned} & \text { As Req'd } \\ & \text { in^2 } \end{aligned}$	$\begin{aligned} & \text { Gvrn. As } \\ & \text { in^2 } \end{aligned}$	$\begin{aligned} & \text { Actual As } \\ & \text { in^2 } \end{aligned}$	$\begin{gathered} \text { Phi*Mn } \\ \text { k-ft } \end{gathered}$	Status
X-X, +1.40D	0.06905	+Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +1.40D	0.06905	-Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +1.20D	0.05919	+Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +1.20D	0.05919	-Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
$X-X,+1.20 \mathrm{D}+0.50 \mathrm{~S}$	0.1239	+Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +1.20D+0.50S	0.1239	-Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +1.20D+1.60S	0.2661	+Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +1.20D+1.60S	0.2661	-Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +0.90D	0.04439	+Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +0.90D	0.04439	-Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
$\mathrm{X}-\mathrm{X},+1.432 \mathrm{D}+0.20 \mathrm{~S}+\mathrm{E}$	0.09650	+Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +1.432D+0.20S +E	0.09650	-Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +0.6680D+E	0.03295	+Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
X-X, +0.6680D+E	0.03295	-Z	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.40D	0.06905	-X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.40D	0.06905	+X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.20D	0.05919	-X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.20D	0.05919	+X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.20D+0.50S	0.1239	-X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.20D+0.50S	0.1239	+X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.20D+1.60S	0.2661	-X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.20D+1.60S	0.2661	+X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +0.90D	0.04439	-X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +0.90D	0.04439	+X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.432D+0.20S+E	0.1920	$-X$	Top	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +1.432D+0.20S+E	0.4076	+X	Bottom	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +0.6680D+E	0.09767	-X	Top	0.2160	AsMin	0.2857	8.568	OK
Z-Z, +0.6680D+E	0.6987	+X	Bottom	0.2160	AsMin	0.2857	8.568	OK
One Way Shear								

Load Combination...	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @ +Z	Vu:Max	Phi Vn Vu	Vu / Phi*Vn	Status
+1.40D	0.69 psi	75.00 psi	- 0.01	OK				
+1.20D	0.59 psi	75.00 psi	0.01	OK				
+1.20D+0.50S	1.23 psi	75.00 psi	0.02	OK				
+1.20D+1.60S	2.65 psi	75.00 psi	0.04	OK				
+0.90D	0.44 psi	75.00 psi	- 0.01	OK				
+1.432D+0.20S+E	2.08 psi	4.32 psi	0.96 psi	0.96 psi	4.32 psi	75.00 psi	0.06	OK
+0.6680D+E	0.97 psi	8.13 psi	0.33 psi	0.33 psi	8.13 psi	75.00 psi	- 0.11	OK
Two-Way "Punching" Shear							All units	

Load Combination...	Vu	Phi ${ }^{*}$ Vn	Vu $/ \mathbf{P h i}^{\star}$ Vn	Status
+1.40 D	1.59 psi	150.00 psi	0.01057	OK
+1.20 D	1.36 psi	150.00 psi	0.009061	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~S}$	2.84 psi	150.00 psi	0.01896	OK
+1.20D +1.60 S	6.11 psi	150.00 psi	0.04074	OK
+0.90D	1.02 psi	150.00 psi	0.006796	OK
$+1.432 \mathrm{D}+0.20 \mathrm{~S}+\mathrm{E}$	2.28 psi	150.00 psi	0.01517	OK
+0.6680D+E	1.91 psi	150.00 psi	0.01273	OK

[^0]: * See Section 11.4.8

[^1]: Footing Has NO Sliding

